Certos fenômenos que ocorrem em buracos negros, mas não podem ser observados diretamente nas investigações astronômicas, podem ser estudados por meio de simulações em laboratório. Isso se deve a uma analogia peculiar entre processos característicos de buracos negros e processos hidrodinâmicos. O denominador comum de uns e outros é o fato de as propagações de ondas se darem de forma bastante similar.
Essa possibilidade é explorada em um novo artigo publicado na Physical Review Letters. O físico Maurício Richartz, professor da Universidade Federal do ABC (UFABC), é um dos autores do artigo, produzido pelo grupo de Silke Weinfurtner, da School of Mathematical Sciences da University of Nottingham, no Reino Unido. O trabalho teve apoio da FAPESP por meio do Projeto Temático “Física e geometria do espaço-tempo”, coordenado por Alberto Vazquez Saa.
“Embora este estudo seja inteiramente teórico, temos feito também simulações experimentais no laboratório de Weinfurtner. O equipamento é, basicamente, um grande tanque de água, com dimensões de 3 metros por 1,5 metro. O tanque dispõe de um ralo no centro e de um aparato de bombeamento, que reintroduz a água que escoa. Isso possibilita que o sistema atinja um ponto de equilíbrio, no qual a quantidade de água que entra iguala a quantidade de água que sai. Dessa forma, conseguimos simular um buraco negro”, disse Richartz.
O pesquisador explicou como isso é possível. “A água ganha velocidade à medida que escoa. Quanto mais próxima do ralo, mais rapidamente ela flui. Então, quando produzimos ondas na superfície da água, passamos a ter duas velocidades importantes: a velocidade de propagação das ondas na água e a velocidade de escoamento da água como um todo”, disse.
“Longe do ralo a velocidade das ondas é muito maior do que a velocidade do fluido. Por isso, as ondas podem se propagar em qualquer direção. Perto do ralo, porém, a situação muda: a velocidade do fluido torna-se muito maior do que a velocidade das ondas. E isso faz com que a onda seja arrastada pelo fluido, mesmo que ela se propague em sentido contrário. Dessa forma, é possível produzir, em laboratório, um simulacro do buraco negro”, prosseguiu.
No buraco negro astrofísico real, a atração gravitacional captura a matéria e impede o escape de qualquer tipo de onda – mesmo das ondas luminosas. No simulacro hidrodinâmico, são as ondas na superfície do fluido que não conseguem escapar do vórtice que se forma.
Por José Tadeu Arantes(Agência FAPESP)